2022—Riley, W. J., Sierra, C. A., Tang, J. Y., Bouskill, N. J., Zhu, Q., & Abramoff, R.. Next generation soil biogeochemistry model representations: A proposed community open source model farm (BeTR- S). In Multi-Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes. Wiley.
2021—Zosso, C. U., Ofiti, N. O. E., Soong, J. L., Solly, E. F., Torn, M. S., Huguet, A., et al.. Whole-soil warming decreases abundance and modifies the community structure of microorganisms in the subsoil but not in surface soil. SOIL, 7(2), 477–494. DOI: https://doi.org/10.5194/soil-7-477-2021
2021—Tang, J., Riley, W. J., Marschmann, G. L., & Brodie, E. L.. Conceptualizing Biogeochemical Reactions With an Ohm’s Law Analogy. Journal of Advances in Modeling Earth Systems, 13(10). DOI: https://doi.org/10.1029/2021ms002469
2021—Soong, J. L., Castanha, C., Hicks Pries, C. E., Ofiti, N., Porras, R. C., Riley, W. J., Schmidt, M. W. I., Torn, M. S.. Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux. Science Advances, 7(21). DOI: https://doi.org/10.1126/sciadv.abd1343
2021—Rowley, M. C., Grand, S., Spangenberg, J. E., & Verrecchia, E. P.. Evidence linking calcium to increased organo-mineral association in soils. Biogeochemistry, 153(3), 223–241. DOI: https://doi.org/10.1007/s10533-021-00779-7
2021—Ofiti, N. O. E., Zosso, C. U., Soong, J. L., Solly, E. F., Torn, M. S., Wiesenberg, G. L. B., & Schmidt, M. W. I.. Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter. Soil Biology and Biochemistry, 156, 108185. DOI: https://doi.org/10.1016/j.soilbio.2021.108185
2021—Heckman, K. A., Swanston, C. W., Torn, M. S., Hanson, P. J., Nave, L. E., Porras, R. C., Mishra, U., Bill, M.. Soil organic matter is principally root derived in an Ultisol under oak forest. Geoderma, 403, 115385. DOI: https://doi.org/10.1016/j.geoderma.2021.115385
2021—Dove, N. C., Torn, M. S., Hart, S. C., and Taş, N.. Metabolic capabilities mute positive response to direct and indirect impacts of warming throughout the soil profile. Nature Communications, 12(1). DOI: https://doi.org/10.1038/s41467-021-22408-5
2021—Damerow, J. E., Varadharajan, C., Boye, K., Brodie, E. L., Burrus, M., Chadwick, K. D., Crystal-Ornelas, R., Elbashandy, H., Alves, R. J. E., Ely, K. S., Goldman, A. E., Haberman, T., Hendrix, V., Kakalia, Z., Kemner, K. M., Kersting, A. B., Merino, N., O’Brien, F., Perzan, Z., Robles, E., Sorensen, P., Stegen, J. C., Walls, R. L., Weisenhorn, P., Zavarin, M., Agarwal, D.. Sample Identifiers and Metadata to Support Data Management and Reuse in Multidisciplinary Ecosystem Sciences. Data Science Journal, 20(1), 11. DOI: https://doi.org/10.5334/dsj-2021-011
2021—Alves, R. J. E., Callejas, I. A., Marschmann, G. L., Mooshammer, M., Singh, H. W., Whitney, B., Torn, M. S., Brodie, E. L.. Kinetic Properties of Microbial Exoenzymes Vary With Soil Depth but Have Similar Temperature Sensitivities Through the Soil Profile. Frontiers in Microbiology, 12. DOI: https://doi.org/10.3389/fmicb.2021.735282
2021—Abramoff, R. Z., Georgiou, K., Guenet, B., Torn, M. S., Huang, Y., Zhang, H., Feng, W., Jagadamma, S., Kaiser, K., Kothawala, D., Mayes, M. A., Ciais, P.. How much carbon can be added to soil by sorption? Biogeochemistry, 152(2–3), 127–142 DOI: https://doi.org/10.1007/s10533-021-00759-x
2020—Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R. F., et al. (59 coauthors). Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytologist, 229(5), 2413–2445. DOI: https://doi.org/10.1111/nph.16866
2020—Soong, J. L., Phillips, C. L., Ledna, C., Koven, C. D., & Torn, M. S.. CMIP5 Models Predict Rapid and Deep Soil Warming Over the 21st Century. Journal of Geophysical Research: Biogeosciences, 125(2). DOI: https://doi.org/10.1029/2019jg005266
2020—Soong, J. L., Fuchslueger, L., Marañon‐Jimenez, S., Torn, M. S., Janssens, I. A., Penuelas, J., & Richter, A.. Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling. Global Change Biology, 26(4), 1953–1961. DOI: https://doi.org/10.1111/gcb.14962
2020—Schaefer, M. V., Bogie, N. A., Rath, D., Marklein, A. R., Garniwan, A., Haensel, T., Lin, Y., Avila, C., Nico, P. S., Scow, K. M., Brodie, E. L., Riley, W. J., Fogel, M. L., Berhe, A. A., Ghezzehei, T. A., Parikh, S., Keiluweit, M., Ying, S.. Effect of Cover Crop on Carbon Distribution in Size and Density Separated Soil Aggregates. Soil Systems, 4(1), 6. DOI: https://doi.org/10.3390/soilsystems4010006
2020—Mooshammer, M., Alves, R. J. E., Bayer, B., Melcher, M., Stieglmeier, M., Jochum, L., Rittmann, S. K.-M. R., Watzka, M., Schleper, C., Herndl, G. J., Wanek, W.. Nitrogen Isotope Fractionation During Archaeal Ammonia Oxidation: Coupled Estimates From Measurements of Residual Ammonium and Accumulated Nitrite. Frontiers in Microbiology, 11. DOI: https://doi.org/10.3389/fmicb.2020.01710
2020—Matzen, S., Fakra, S., Nico, P., & Pallud, C.. Pteris vittata Arsenic Accumulation Only Partially Explains Soil Arsenic Depletion during Field-Scale Phytoextraction. Soil Systems, 4(4), 71. DOI: https://doi.org/10.3390/soilsystems4040071
2020—Lehmann, J., Hansel, C. M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S., Nunan, N., Reichstein, M., Schimel, J., Torn, M. S., Kögel-Knabner, I.. Persistence of soil organic carbon caused by functional complexity. Nature Geoscience, 13(8), 529–534. DOI: https://doi.org/10.1038/s41561-020-0612-3
2020—Lawrence, C. R., Beem-Miller, J., Hoyt, A. M., Monroe, G., Sierra, C. A., Stoner, S., Heckman, K., Blankinship, J. C., Crow, S. E., McNicol, G., Trumbore, S., Levine, P. A., Vindušková, O., Todd-Brown, K., Rasmussen, C., Hicks Pries, C. E., Schädel, C., McFarlane, K., Doetterl, S., Hatté, C., He, Y., Treat, C., Harden, J. W., Torn, M. S., Estop-Aragonés, C., Asefaw Berhe, A., Keiluweit, M., Della Rosa Kuhnen, Á., Marin-Spiotta, E., Plante, A. F., Thompson, A., Shi, Z., Schimel, J. P., Vaughn, L. J. S., von Fromm, S. F., and Wagai, R.. An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0. Earth System Science Data, 12(1), 61–76. DOI: https://doi.org/10.5194/essd-12-61-2020
2020—Jones, M. E., LaCroix, R. E., Zeigler, J., Ying, S. C., Nico, P. S., & Keiluweit, M.. Enzymes, Manganese, or Iron? Drivers of Oxidative Organic Matter Decomposition in Soils. Environmental Science & Technology, 54(21), 14114–14123. DOI: https://doi.org/10.1021/acs.est.0c04212
2020—Hicks Pries, C., Angert, A., Castanha, C., Hilman, B., & Torn, M. S.. Using respiration quotients to track changing sources of soil respiration seasonally and with experimental warming. Biogeosciences, 17(12), 3045–3055. DOI: https://doi.org/10.5194/bg-17-3045-2020
2019—Walker, T. W. N., Janssens, I. A., Weedon, J. T., Sigurdsson, B. D., Richter, A., Peñuelas, J., Leblans N.I.W., Bahn M., Bartrons M., De Jonge C., Fuchslueger L., Gargallo-Garigga A., Gunnarsdottir G.E.G., Marañon-Jimenez S., Oddsdóttir E.S., Ostonen I., Poeplau C., Prommer J., Radujkovic D., Sardans J., Siggur∂sson P., Soong J.L., Vicca S., Wallander H., K. Illieva-Makulec, Verbruggen E.. A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem. Nature Ecology & Evolution, 4(1), 101–108. DOI: https://doi.org/10.1038/s41559-019-1055-3
2019—Tang, J., & Riley, W. J.. Competitor and substrate sizes and diffusion together define enzymatic depolymerization and microbial substrate uptake rates. Soil Biology and Biochemistry, 139, 107624. DOI: https://doi.org/10.1016/j.soilbio.2019.107624
2019—Tang, F. H. M., Riley, W. J., & Maggi, F.. Hourly and daily rainfall intensification causes opposing effects on C and N emissions, storage, and leaching in dry and wet grasslands. Biogeochemistry, 144(2), 197–214. DOI: https://doi.org/10.1007/s10533-019-00580-7
2019—Siljanen, H. M. P., Alves, R. J. E., Ronkainen, J. G., Lamprecht, R. E., Bhattarai, H. R., Bagnoud, A., Marushchak, M. E., Martikainen, P. J., Schleper, C., Biasi, C.. Archaeal nitrification is a key driver of high nitrous oxide emissions from arctic peatlands. Soil Biology and Biochemistry, 137, 107539. DOI: https://doi.org/10.1016/j.soilbio.2019.107539
2019—la Cecilia, D., Riley, W. J., & Maggi, F.. Biochemical modeling of microbial memory effects and catabolite repression on soil organic carbon compounds. Soil Biology and Biochemistry, 128, 1–12. DOI: https://doi.org/10.1016/j.soilbio.2018.10.003
2019—Dwivedi, D., Tang, J., Bouskill, N., Georgiou, K., Chacon, S. S., & Riley, W. J.. Abiotic and Biotic Controls on Soil Organo–Mineral Interactions: Developing Model Structures to Analyze Why Soil Organic Matter Persists. Reviews in Mineralogy and Geochemistry, 85(1), 329–348. DOI: https://doi.org/10.2138/rmg.2019.85.11
2019—Bréchet, L., Courtois, E. A., Saint-Germain, T., Janssens, I. A., Asensio, D., Ramirez-Rojas, I., Soong, J. L., Van Langenhove, L., Verbruggen, E., Stahl, C.. Disentangling Drought and Nutrient Effects on Soil Carbon Dioxide and Methane Fluxes in a Tropical Forest. Frontiers in Environmental Science, 7. DOI: https://doi.org/10.3389/fenvs.2019.00180
2019—Alves, R. J. E., Kerou, M., Zappe, A., Bittner, R., Abby, S. S., Schmidt, H. A., Pfeifer, K., Schleper, C.. Ammonia Oxidation by the Arctic Terrestrial Thaumarchaeote Candidatus Nitrosocosmicus arcticus Is Stimulated by Increasing Temperatures. Frontiers in Microbiology, 10. DOI: https://doi.org/10.3389/fmicb.2019.01571
2019—Abramoff, R. Z., Torn, M. S., Georgiou, K., Tang, J., and Riley, W. J.. Soil Organic Matter Temperature Sensitivity Cannot be Directly Inferred From Spatial Gradients. Global Biogeochemical Cycles, 33(6), 761–776. DOI: https://doi.org/10.1029/2018gb006001
2018—Sulman, B. N., Moore, J. A. M., Abramoff, R., Averill, C., Kivlin, S., Georgiou, K., Sridhar, B., Hartman, M. D., Wang, G., Wieder, W. R., Bradford, M. A., Luo, Y., Mayes, M. A., Morrison, E., Riley, W. J., Salazar, A., Schimel, J. P., Tang, J. Y., Classen, A. T.. Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry, 141(2), 109–123. DOI: https://doi.org/10.1007/s10533-018-0509-z
2018—Smith, P., S. Lutfalla, W.J. Riley, M.S. Torn, M.W.I. Schmidt & J.-F. Soussana. The changing faces of soil organic matter research. European Journal of Soil Science 69:23–30. DOI: 10.1111/ejss.12500
2018—Rasmussen, C., K. Heckman, W. R. Wieder, M. Keiluweit, C. R. Lawrence, A. A. Berhe, J. C. Blankinship, S. E. Crow, J. L. Druhan, C. E. Hicks Pries, E. Marin-Spiotta, A. F. Plante, C. Schädel, J. P. Schemel, C. A. Sierra, A. Thompson, R. Wagai. Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 137:297–306 DOI: https://doi.org/10.1007/s10533-018-0424-3
2018—Porras R.C., Hicks Pries C.E., Torn M.S., Nico P.S. Synthetic iron (hydr)oxide-glucose associations in subsurface soil: Effects on decomposability of mineral associated carbon. Science of the Total Environment 613, 342-351. DOI: 10.1016/j.scitotenv.2017.08.290
2018—Maggi, F. M., F. H. M. Tang, and W. J. Riley., The thermodynamic links between substrate, enzyme, and microbial dynamics in Michaeli-Menten-Monod kinetics.International Journal of Chemical Kinetics 50(5):343-356. DOI: 10.1002/kin.21163
2018—Hicks Pries, C. E., Sulman, B. N., West, C., O’Neill, C., Poppleton, E., Porras, R. C., Castanha, C., Zhu, B., Wiedemeier, D. B., Torn, M. S.. Root litter decomposition slows with soil depth. Soil Biology and Biochemistry, 125, 103–114. DOI: https://doi.org/10.1016/j.soilbio.2018.07.002
2018—Hicks Pries C.E., Castanha C., Porras R.C., Phillips C., Torn M.S. Response to Comment on “The whole-soil carbon flux in response to warming." Science 359 (6378), eaao0457 DOI: 10.1126/science.aao0457
2018—Guenet, B., Camino-Serrano, M., Ciais P., Tifafi, M., Maignan, F., Soong, J.L., Janssens, I.A. Impact of priming on global soil carbon stocks. Global Change Biology 2018(24):1873–1883 DOI: 10.1111/gcb.14069
2018—Georgiou, K., Harte, J., Mesbah, A., & Riley, W. J.. A method of alternating characteristics with application to advection-dominated environmental systems. Computational Geosciences, 22(3), 851–865. DOI: https://doi.org/10.1007/s10596-018-9729-5
2018—Courtois E.A., Stahl C., Van den Berge J., Bréchet L., Van Langenhove L., Richter A., Urbina I., Soong J.L., Peñuelas J., Janssens I.A. Spatial Variation of Soil CO2, CH4 and N2O Fluxes Across Topographical Positions in Tropical Forests of the Guiana Shield. Ecosystems https://doi.org/10.1007/s10021-018-0232-6 DOI: 10.1007/s10021-018-0232-6
2017—Porras R.C., Hicks Pries C.E., McFarlane K.J., Torn M.S. Association with pedogenic iron and aluminum: Effects on soil organic matter storage and stability in temperate forest soils. Biogeochemistry 133 (3), 333-345 DOI: 10.1007/s10533-017-0337-6
2017—Hicks Pries C.E., Castanha C., Porras R.C., Torn M.S. The whole-soil carbon flux in response to warming. Science 355 (6332), 1420-1423 DOI: 10.1126/science.aal1319
2017—Hicks Pries C.E., Bird J.A., Castanha C., Hatton P.J., Torn M.S. Long term decomposition: The influence of litter type and soil horizon on retention of plant carbon and nitrogen in soils. Biogeochemistry 134 (1-2), 5-16 DOI: 10.1007/s10533-017-0345-6
2017—Georgiou, K., R.Z. Abramoff, J. Harte, W.J. Riley, M.S. Torn. Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nature Communications, 8 (1), 1223
2017—Castanha C, B Zhu, CE Hicks Pries, K Georgiou, MS Torn. The effects of heating, rhizosphere, and depth on root litter decomposition are mediated by soil moisture. Biogeochemistry DOI: 10.1007/s10533-017-0418-6
2017—Berhe, A. A., and M. S. Torn. Erosional redistribution of topsoil controls soil nitrogen dynamics, Biogeochemistry, 132, 37 DOI: 10.1007/s10533-016-0286-5
2017—Abramoff RZ , Xu X, Hartmann M, O’Brien S, Feng W, Davidson EA, Finzi AC, Moorhead D, Schimel J, Torn M, Mayes M. The Millennial model: in search of measurable pools and exchanges in soil carbon cycling for the new century. Biogeochemistry, 137(1-2): 51–71 DOI: 10.1007/s10533-017-0409-7
2017—Abramoff RZ , Davidson EA, Finzi AC. A parsimonious modular approach to building a mechanistic belowground carbon and nitrogen model. JGR Biogeosciences 122 DOI: 10.1002/2017JG003796
2016—Trumbore, S. E., C. A. Sierra, and C. E. Hicks Pries. Radiocarbon Nomenclature, Theory, Models, and Interpretation: Measuring Age, Determining Cycling Rates, and Tracing Source Pools, in Radiocarbon and Climate Change: Mechanisms, Applications and Laboratory Techniques, edited by A. G. E. Schuur, E. Druffel and E. S. Trumbore, pp. 45-82, Springer International Publishing, Cham. DOI: 10.1007/978-3-319-25643-6_3
2016—Schuur, E. A. G., M. S. Carbone, C. E. Hicks Pries, F. M. Hopkins, and S. M. Natali. Radiocarbon in Terrestrial Systems, in Radiocarbon and Climate Change: Mechanisms, Applications and Laboratory Techniques, edited by A. G. E. Schuur, E. Druffel and E. S. Trumbore, pp. 167-220, Springer International Publishing, Cham. DOI: 10.1007/978-3-319-25643-6_6
2016—Luo, Yiqi, A Ahlström, SD Allison, NH Batjes, V Brovkin, N Carvalhais, A Chappell, P Ciais, EA Davidson, A Finzi, K Georgiou, B Guenet, O Hararuk, JW Harden, Y He, F Hopkins, L Jiang, C Koven, RB Jackson, CD Jones, MJ Lara, J Liang, AD McGuire, W Parton, C Peng, JT Randerson, A Salazar, CA Sierra, MJ Smith, H Tian, KEO Todd‐Brown, MS Torn, K Jan Groenigen, Y Ping Wang, TO West, Y Wei, WR Wieder, J Xia, X Xu, X Xu, T Zhou. 2016. Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles 30:40-56 DOI: 10.1002/2015GB005239
2016—Hicks Pries, C. E., E. A. G. Schuur, S. M. Natali, and K. G. Crummer. Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra. Nature Climate Change 6:214-218 DOI: 10.1038/nclimate2830
2016—He, Y., S. E. Trumbore, M. S. Torn, J. W. Harden, V. Ljs, S. D. Allison, and J. T. Randerson. Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science 353(6306):1419-1424 DOI: 10.1126/science.aad4273
2016—Dwivedi, D., W. J. Riley, M. S. Torn, N. Spycher, F. Maggi, and J. Y. Tang. Mineral properties, microbes, transport, and plant-input profiles control vertical distribution and age of soil carbon stock. Soil Biology & Biochemistry 107:244-259 DOI: 10.1016/j.soilbio.2016.12.019
2016—Abramoff RZ, Finzi AC. Seasonality and partitioning of root allocation to rhizosphere soils in a midlatitude forest. Ecosphere 7.11, e01547 DOI: 10.1002/ecs2.1547
2015—Zhu, Q., and W. J. Riley. Improved modeling of soil nitrogen losses, Nature Climate Change, 5(8), 705-706 DOI: 10.1038/nclimate2696
2015—Wieder W., Allison S., Davidson E., Georgiou K., Hararuk O., He Y., Hopkins F., Luo Y., Smith M., Sulman B., Todd-Brown K., Wang Y. P., Xia J., Xu X. Explicitly Representing Soil Microbial Processes in Earth System Models. Global Biogeochemical Cycles 29:1782-1800 DOI: 10.1002/2015GB005188
2015—Torn, MS, A Chabbi, P Crill, PJ Hanson, IA Janssens, Y Luo, CH Pries, C Rumpel, MWI Schmidt, J Six, M Schrumpf, and B Zhu. 2015. A call for international soil experiment networks for studying, predicting, and managing global change impacts. Soil 1:575-582 DOI: 10.5194/soil-1-575-2015
2015—Tang, J., and W. J. Riley. Weaker soil carbon-climate feedbacks resulting from microbial and abiotic interactions, Nature Climate Change, 5(1), 56-60 DOI: 10.1038/nclimate2438
2015—Swenson, T. L., B. P. Bowen, P. S. Nico, and T. R. Northen. Competitive sorption of microbial metabolites on an iron oxide mineral. Soil Biology & Biochemistry 90:34-41. DOI: 10.1016/j.soilbio.2015.07.022
2015—Koven, C. D., J. Q. Chambers, K. Georgiou, R. Knox, R. Negron-Juarez, W. J. Riley, V. K. Arora, V. Brovkin, P. Friedlingstein, and C. D. Jones. Controls on terrestrial carbon feedbacks by productivity vs. turnover in the CMIP5 Earth System Models, Biogeosciences Discussions, 12(8), 5757-5801 DOI: 10.5194/bgd-12-5757-2015
2015—Hicks Pries, C. E., R. S. P. van Logtestijn, E. A. G. Schuur, S. M. Natali, J. H. C. Cornelissen, R. Aerts, and E. Dorrepaal. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems, Global Change Biology, 21(12), 4508-4519 DOI: 10.1111/gcb.13032
2015—Hatton PJ, C Castanha, MS Torn, JA Bird. Litter type control on soil C and N stabilization dynamics in a temperate forest. Global Change Biology 21:1358–1367 DOI: 10.1111/gcb.12786
2015—Georgiou, K., C.D. Koven, W.J. Riley, M.S. Torn. Towards improved model structures for analyzing priming: potential pitfalls of using bulk turnover time. Global Change Biology 21:4298-4302 DOI: 10.1111/gcb.13039
2014—Tas, N., E. Prestat, J. W. McFarland, K. Wickland, R. Knight, A. A. Berhe, T. Jorgenson, M. Waldrop and J. K. Jansson. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME Journal 8, 1904–1919. DOI: :10.1038/ismej.2014.36
2014—Singh, N., A. Abiven, B. Maestrini, J. A. Bird, M. S. Torn, and M. W. I. Schmidt. Transformation and stabilization of pyrogenic organic matter in a temperate forest field experiment. Global Change Biology 20:1629-1642 DOI: 10.1111/gcb.12459
2014—Ryals, R., M. Kaiser, M. S. Torn, A. A. Berhe, and W. L. Silver. Impacts of organic matter amendments on carbon and nitrogen dynamics in grassland soils. Soil Biology & Biochemistry 68:52-61 DOI: 10.1016/j.soilbio.2013.09.011
2014—Riley, W. J., F. M. Maggi, M. Kleber, M. S. Torn, J. Y. Tang, D. Dwivedi, and N. Guerry. Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically-resolved model (TOUGHREACTv1) to soil carbon dynamics. Geoscientific Model Develo, 7:1335–1355 DOI: 10.5194/gmd-7-1335-2014
2014—Maestrini, B., S. Abiven, N. Singh, J. Bird, M.S. Torn, and M.W.I. Schmidt. Carbon losses from pyrolysed and original wood in a forest soil under natural and increased N deposition. Biogeosciences 11:5199–5213. DOI: 10.5194/bg-11-5199-2014
2014—Jansson, J. K. and N. Tas. The microbial ecology of permafrost. Nature Reviews Microbiology volume 12, pages 414–425 DOI: 10.1038/nrmicro3262
2014—Bailey, V., P. Hanson, J. Jastrow, M. S. Torn, and D. Stover. Data-model needs for belowground ecology, A summary report from the Terrestrial Ecosystem Science (TES) mini-workshop, May 8, 2014 (Report date December 4, 2014)
2013—Torn, M. S., M. Kleber, E. S. Zavaleta, B. Zhu, C. B. Field, and S. E. Trumbore. A dual isotope approach to isolate soil carbon pools of different turnover times. Biogeosciences 10:8067-8081 DOI: 10.5194/bg-10-8067-2013
2013—Nicora, C., B. Anderson, S. Callister, A. Norbeck, S. Purvine, J. Jansson, O. Mason, D. Jurelevicius, M. David, R. Smith and M. Lipton. Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies. Proteomics 13:2776-2785 DOI: 10.1002/pmic.201300003
2013—Mishra, U., M. S. Torn, and K. Fingerman. Miscanthus biomass productivity within U.S. croplands and its potential impact on soil organic carbon. Global Change Biology-Bioenergy 5:391-399 DOI: 10.1111/j.1757-1707.2012.01201.x
2013—McFarlane, K. J., M. S. Torn, P. J. Hanson, R. C. Porras, C. W. Swanston, M. A. Callaham, and T. P. Guilderson. Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements. Biogeochemistry 112:457-476 DOI: 10.1007/s10533-012-9740-1
2013—Koven, C. D., W. J. Riley, Z. M. Subin, J. Y. Tang, M. S. Torn, W. D. Collins, G. B. Bonan, D. M. Lawrence, and S. C. Swenson. The effect of vertically-resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences DOI: 10:7109-7131
2013—Jansson J. Soil Metagenomics. In: Nelson K. (eds) Encyclopedia of Metagenomics. Pub. Springer, New York, NY DOI: 10.1007/978-1-4614-6418-1_701-4
2013—Jansson, J. K. The life beneath our feet: Exploring Earth’s dark matter. Nature 494:40-41 DOI: 10.1038/494040a
2013—Crane-Droesch, A., S. Abiven, S. Jeffery, and M. S. Torn. Heterogeneous global crop yield response to biochar: a meta-regression analysis. Environmental Research Letters 8:044049 DOI: 10.1088/1748-9326/8/4/044049
2012—Singh, N., S. Abiven, M. S. Torn, and M. W. I. Schmidt. Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9:2847–2857 DOI: 10.5194/bg-9-2847-2012
2012—Santos, F., M. S. Torn, and J. A. Bird. Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biology & Biochemistry 51:115-124 DOI: 10.1016/j.soilbio.2012.04.005
2012—Mishra, U., M. S. Torn, E. Masanet, and S. M. Ogle. Improving regional soil carbon inventories: Combining the IPCC carbon inventory method with regression kriging. Geoderma 189-190:288-295 DOI: 10.1016/j.geoderma.2012.06.022
2012—Knight, R., J. K. Jansson, D. Field, N. Fierer, N. Desai, J. A. Fuhrman, P. Hugenholtz, D. van der Lelie, F. Meyer, R. Stevens, M. J. Bailey, J. I. Gordon, G. A. Kowalchuk and J. A. Gilbert. Unlocking the potential of metagenomics through replicated experimental design. Nature Biotechnology 30:513-520 DOI: 10.1038/nbt.2235
2012—Jansson, J. K., J. D. Neufeld, M. A. Moran, and J. A. Gilbert. Omics for understanding microbial functional dynamics. Environmental Microbiology 14:1-3 DOI: 10.1111/j.1462-2920.2011.02518.x
2012—Hopkins, F. M., M. S. Torn, and S. E. Trumbore. Warming accelerates decomposition of decades-old carbon in forest soils. PNAS 109:E1753–E1761 DOI: 10.1073/pnas.1120603109
2012—Graham, D. E., M. E. Wallenstein, T. A. Vishnivetskaya, M. P. Waldrop, T. J. Phelps, S. M. Pfiffner, T. C. Onstott, L. G. Whyte, E. Rivkina, D. A. Gilicyihsky, D. A. Elias, R. Mackelprang, N. C. VerBerkmoes, R. L. Hettich, D. Wagner, S. D. Wullschleger, and J. K. Jansson. Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME Journal 6:709-712 DOI: 10.1038/ismej.2011.163
2012—Chatergee, S. N., F. Santos, S. Abiven, B. Itin, R. Stark, and J.A. Bird. Elucidating the chemical structure of pyrogenic organic matter by combining magnetic resonance, mid-infrared spectroscopy and mass spectrometry. Organic Geochemistry 51:35-44 DOI: 10.1016/j.orggeochem.2012.07.006
2011—Schmidt, M. W. I. S., M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, D. A. C. Manning, P. Nannipieri, D. P. Rasse, S. Weiner, and S. E. Trumbore. Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. (Schmidt and Torn are equal co-authors) DOI: 10.1038/nature10386
2011—Mambelli, S, J. A. Bird, G. Gleixner, T. E. Dawson, and M. S. Torn. Relative contribution of needle and fine root pine litter to the molecular composition of soil organic matter after in situ degradation. Organic Geochemistry 42:1099-1108 DOI: 10.1016/j.orggeochem.2011.06.008
2011—Mackelprang, R., M. P. Waldrop, K. M. DeAngelis, M. M. David, K. L. Chavarria, S. J. Blazewicz, E. M. Rubin, and J. K. Jansson. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480:368-371 DOI: 10.1038/nature10576
2011—Luo, Y., J. Melillo, S. Niu, C. Beier, J. S. Clark, A. T. Classen, E. Davidson, J. S. Dukes, R. D. Evans, C. B. Field, C. I. Czimczik, M. Keller, B. A. Kimball, L. M. Kueppers, R. J. Norby, S. L. Pelini, E. Pendall, E. Rastetter, J. Six, M. Smith, M. Tjoelker, and M.S. Torn. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change. Global Change Biology 17:843-854 DOI: 10.1111/j.1365-2486.2010.02265.x
2011—Kleber, M., P. S. Nico, A. Plante, T. Filley, M. Kramer, C. Swanston, and P. Sollins. Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Global Change Biology 17:1097–1107 DOI: 10.1111/j.1365-2486.2010.02278.x
2011—Jansson, J. K. Towards “Tera Terra”: Terabase sequencing of terrestrial metagenomics. Microbe 6:309-315 DOI: 10.1128/microbe.6.309.1
2011—Cusack, D. F., W. L. Silver, M. S. Torn, S. D. Burton, and M. K. Firestone. Changes in microbial community characteristics and processing of soil organic matter after chronic nitrogen additions on in two tropical forests. Ecology 92:621-632 DOI: 10.1890/10-0459.1
2011—Cusack, D. F., W. L. Silver, M. S. Torn, and W. H. McDowell. Effects of chronic nitrogen additions on above- and belowground carbon dynamics in two tropical forests. Biogeochemistry 104:203-225 DOI: 10.1007/s10533-010-9496-4
2010—Prosser, J., J. K. Jansson and W.-T. Liu. Nucleic-acid-based characterization of community structure and function. In Liu, W-T. and J.K. Jansson (eds) Environmental Molecular Microbiology. Caister Academic Press. pp. 63-86
2010—Parton, W. J., P. J. Hanson, C. Swanston, M. S. Torn, S. E. Trumbore, W. J. Riley, and R. Kelly. ForCent model development and testing using the enriched background isotope study experiment. JGR-Biogeosciences 115:G04001 DOI: 10.1029/2009JG00119
2010—Keiluweit, M., P. S. Nico, M. G. Johnson, and M. Kleber. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology 44:1247-1253 DOI: 10.1021/es9031419
2010—Gaudinski, J. B., M. S. Torn, W. J. Riley, T. E. Dawson, J. D. Joslin, and H. Majdi. Measuring and modeling the spectrum of fine-root turnover times in three forests using isotopes, minirhizotrons, and the Radix model. Global Biogeochemical Cycles, 24:GB3029 DOI: 10.1029/2009GB003649
2010—Cusack, D. F., M. S. Torn, W. H. McDowell, and W.L. Silver. The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Global Change Biology 16:2555-2572 DOI: 10.1111/j.1365-2486.2009.02131.x
2010—Chourey, K., J. K. Jansson, N. VerBerkmoes, M. Shah, K. Chavarria, L. Tom, E. Brodie, and R. Hettich. Direct cellular lysis/protein extraction protocol for soil metaproteomics. Journal of Proteome Research 9:6615-6622 DOI: 10.1021/pr100787q